Муниципальное бюджетное учреждение дополнительного образования Дом творчества с.Хлевное

ПРИНЯТО

УТВЕРЖДЕНО

На заседании педагогического совета Директор МБУ ДО ДТ МБУ ДО ДТ Протокол № 1 от 29.08.2024 года ————В.В. Перминова Приказ №54 от 02.09.2024 Γ

Дополнительная общеобразовательная программа **«Конструирование и робототехника»**

Направленность: техническая Возраст обучающихся: 10-14 лет

Составитель: Хрюкин Н.Н. педагог дополнительного образования МБУ ДО ДТ

Хлевное 2024г.

1. Комплекс основных характеристик программы

Пояснительная записка

Дополнительная общеразвивающая программа технической направленности «Конструирование и робототехника» составлена на основе следующих нормативных документов:

- 1. Федеральный Закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- 2. Приказ Министерства Просвещения РФ от 27 июля 2022 № 629 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- 3. Концепция развития дополнительного образования детей в Российской Федерации до 2030 года, утверждена распоряжением правительства РФ от 31.03.2023 №678-р;
- 4. Стратегия развития воспитания в Российской Федерации до 2025 года, утверждена распоряжением правительства РФ от 29.05.2015 г. № 996-р;
- 5. Санитарных правил 2.4.3648-20 «Санитарно-эпидемиологические требования к организации воспитания и обучения, отдыха и оздоровления детей и молодежи» ,утвержденных Постановлением Главного государственного санитарного врача РФ от 28.09.2020 г. № 28;
- 6. Постановлению Главного государственного санитарного врача РФ от 28.01.2021 № 2 «Об утверждении санитарных правил и норм СанПин 1.2.3685-
- 21«Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания» (р. VI. Гигиенические нормативы по устройству, содержанию и режиму работы организаций воспитания и обучения, отдыха и оздоровления детей и молодежи»);
- 7. Устав МБУ ДО ДТ.

Значимость дополнительного образования заключается в том, что оно направлено на формирование творческой личности, креативному мышлению и нестандартным решениям.

Данная программа позволяет реализовать инженерные и конструкторские задачи, а также обучить объектно-ориентированному программированию и моделированию с использование конструкторов LEGO Education WeDo-2.0 и LEGO MINDSTORMS EV3, программного обеспечения Scratch.

Использование конструкторов серии LEGO WeDo-2.0 позволит решать типовые и не типовые задачи, а также нестандартные ситуации, исследовать датчики и поведение роботов, вести собственные наблюдения. При работе в команде способствует формированию и умению взаимодействовать с учениками, анализировать, четко выражать свои мысли и действия, критически оценивать ситуацию, отстаивать свои выводы и решения. При изучении LEGO MINDSTORMS EV3 позволит ученикам сделать более серьезные проекты, будет развивать самостоятельно техническое творчество, которое позволит принимать участие в соревнованиях, конкурсах по робототехнике.

Новые $\Phi\Gamma$ ОС требуют освоения основ конструкторской и проектноисследовательской деятельности, и программы по робототехнике полностью удовлетворяют эти требования.

Актуальность программы заключается тем, что робототехника показывает обучающимся технологии 21 века, которая способствует развитию у их коммуникативных способностей, развивает навыки взаимодействия, самостоятельности и принятию решений, раскрывает их творческий потенциал. Учащиеся лучше понимают, когда они делают самостоятельно, изобретая и создавая разные конструкции и проекты.

При реализации этой программы, для обучающихся это большая помощь в развитие коммуникативных навыков за счет активного участия детей в групповых проектах, которые развивают техническое мышление при работе с 3D редактором LEGO и набором LEGO Education WeDo-2.0, LEGO MINDSTORMS EV3 что позволит обучить их начальным навыкам программирования.

Цель: освоить и использовать средства информационных технологий для решения конструкторских, синтезирующих, интегративных отношений между объектами и процессами реальных задач, обучение воспитанников основам робототехники, программирования. Развитие творческих способностей в процессе конструирования и проектирования.

Способствование успешной адаптации при переходе от подготовительного курса информатики к базовому.

Задачи:

Обучающие:

- дать первоначальные знания о конструкции робототехнических устройств;
- научить приемам сборки и программирования робототехнических устройств;
- сформировать общенаучные и технологические навыки конструирования и проектирования;
- ознакомить с правилами безопасной работы с инструментами
- Познакомить с азами программирования Scratch, с базовыми конструкторскими наборам LEGO We Do2.0, LEGO MINDSTORMS EV3;
- Научить основам объектно-ориентированного программирования, составления простых и сложных алгоритмических программ;
- Научить использовать и программировать датчики, которые позволяют сделать исследования окружающей среды и выполнение поставленных задач;

Воспитывающие:

- формировать творческий подход к решению поставленной задачи, а также представление о том, что большинство задач имеют несколько решений;
- воспитывать умение работать в коллективе, эффективно распределять обязанности.

Развивающие:

- развивать творческую инициативу и самостоятельность;
- способствовать развитию интереса к технике, конструированию, программированию, высоким технологиям
- развивать психофизиологические качества учеников: память, внимание, способность логически мыслить, анализировать, концентрировать внимание на главном.
- развивать умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений.

Программа включает в себя 4 учебных модуля по 72 часа (всего 288 часов), время реализации 4 года. Занятия проходят 1 раз в неделю по 2 часа.

Основными формами учебного процесса являются:

- групповые учебно-практические и теоретические занятия;
- работа по индивидуальным планам (исследовательские проекты);
- участие в соревнованиях между командами;
- комбинированные занятия.

Содержание программы.

1 модуль «Знакомство с конструктором Lego Education We Do 2.0»

NG.		Колі	ичество часов		
№ п/п	Разделы и темы	теори	практика	всего	
		Я	1		
	1. Введение (4ч.)		T		
1	Техника безопасности.	2		2	
2	Правила работы с конструктором.	2		2	
	2. Знакомство с конструктором	Lego (8	Вч.)		
3-4	Знакомство с ресурсным набором Lego	2	2	4	
	Education We Do 2.0				
5-6	Знакомство с базовым набором Lego We Do-	2	2	4	
	2.0				
	3. Знакомство с программным обеспечением	и оборус	дованием (1	0 ч.)	
7-8	Scratch, стандартное программное	2	2	4	
	обеспечение We Do-2.0.				
9	Программный интерфейс	2		2	
	(Микрокомпьютер)				
10-	Моторы, датчик перемещения, датчик	2	2	4	
11	наклона				
- I	4. Конструирование заданных моделей (20 ч.)				

	Модели We Do			
12	Манипулятор	2 2		2
13	Создание программы к модели	2		2
	«Манипулятор»			
14	Мельница	2		2
15	Создание программы к модели «Мельница»	2		2
16	Подъёмный кран	2		2
17	Создание программы к модели «Подъёмный	2		2
	кран»			
18	Истребитель .Создание программы	2		2
	Модели We Do-2.0			
19	Майло научный вездеход	2		2
20	Датчик перемещения Майло	2		2
21	Датчик наклона Майло	2		2
	5. Индивидуальная проектная деят	ельност	ь (18ч.)	
22-	Создание собственных моделей в парах		8	8
25				
26-	Создание собственных моделей в группах		6	6
28				
29-	Соревнование на скорость по		6	6
31	строительству пройденных моделей			
32	Повторение изученного материала	2		2
33	Подведение итогов за год	2		2
34	Перспективы работы на следующий год	2		2
35	Резервные часы	4		4
Итого):		72	

2 модуль «Проектные мотели Lego Education We Do 2.0, программирование Scratch»

N₂		Кол	личество часов		
л/п	Разделы и темы	теори	практика	всего	
		Я	1		
	1. Введение (4 ч.)				
1	Техника безопасности.	2		2	
2	Правила работы с конструктором.	2		2	
	2. Повторение изученного во 2 к	лассе (4	ч.)		
3	Сборка базовых моделей набора Lego		2	2	
	Education WeDo (Артикул: 9585)				
4	Сборка моделей набора Lego Education		2	2	
	WeDo-2 Проект №1 «Первые шаги»				
	3. Scratch (14 v.)				

5	Как устроен Scratch. Первая программа	2		2
6	Усложняем первую программу	2		2
7	Циклическое выполнение программы	2		2
8	Мультик с костюмами		2	2
9	Игра про приключения Котёнка Тесея		2	2
10	Мультик с приведениями		2	2
11	Игра с двумя уровнями.		2	2
	4. Конструирование заданных м	поделей (32	2 y .)	
	Модели We Do 2.0			
12	Проекты с пошаговыми инструкциями	2		2
	«Тяга»			
13	«Скорость»	2		2
14	Прочность конструкции	2		2
15	Метаморфоза лягушки	2		2
16	Растения и опылители	2		2
17	Защита от наводнений	2		2
18	Спасательный десант	2		2
19	Сортировка отходов	2		2
	Проекты с открытыми решениями	2		2
20	Хищник и жертва	2		2
21	Язык животных	2		2
22	Экстремальная среда обитания	2		2
23	Исследование космоса	2		2
24	Предупреждение об опасности	2		2
25	Очистка океана	2		2
26	Мост для животных	2		2
27	Перемещение предметов	2		2
	5. Индивидуальная проектная деяп	пельность	ь (14 ч.)	_
28	Создание собственных моделей в парах		2	2
29	Создание собственных моделей в парах		2	2
30	Создание собственных моделей в группах		2	2
31	Соревнование на скорость по		2	2
	строительству пройденных моделей			
32	Повторение изученного материала	2		2
33	Подведение итогов за год	2		2
34	Перспективы работы на следующий год	2		2
35	Резервные часы	4		4
Итого	D:		72	

3 модуль «Знакомство с конструктором LEGO MINDSTORMS EV3»

N₂	Тема	Колич	нество часов			
п/п		теория	практика	всего		
	1. Введение в робототехнику (20 ч.)					
1.	Роботы. Виды роботов. Значение роботов в жизни человека. Основные направления применения роботов.	2		2		
2.	Правила работы с конструктором LEGO.	2		2		
3.	Управление роботами. Методы общения с роботом. Состав конструктора LEGO MINDSTORMS EV3.	2	2	4		
4.	Языки программирования. Среда программирования модуля, основные блоки.	2	4	6		
5.	Правила техники безопасности при работе с роботами-конструкторами. Правила обращения с роботами.	2		2		
6.	Основные механические детали конструктора и их назначение. Подготовка конструктора к работе.	2	2	4		
2.	Конструирование. Знакомство с роботами 1	LEGO Minds	torm EV3 (5	2ч.)		
7.	Модуль EV3. Обзор, экран, кнопки управления модулем, индикатор состояния, порты. Установка батарей, способы экономии энергии. Включение модуля EV3.	2	2	4		
8.	Запись программы и запуск ее на выполнение.		2	2		
9.	Сервомоторы EV3, сравнение моторов. Мощность и точность мотора. Механика механизмов и машин. Виды соединений и передач и их свойства.	2	2	4		
10.	Сборка модели первого робота по инструкции.		4	4		
11.	Программирование движения вперед по прямой траектории.		2	2		
12.	Расчет числа оборотов колеса для прохождения заданного расстояния.	2	2	4		
13.	Точные повороты	2	2	4		
14.	Датчик касания. Устройство датчика.	2	2	4		

	Практикум.			
15.	Решение задач на движение с использованием датчика касания.	2	2	4
16.	Датчик цвета, режимы работы датчика. Решение задач на движение с использованием датчика цвета.	2	2	4
17.	Ультразвуковой датчик. Решение задач на движение с использованием датчика расстояния.	2	2	4
18.	Гироскопический датчик. Инфракрасный датчик, режим приближения, режим маяка.	2	2	4
19.	Подключение датчиков и моторов. Интерфейс модуля EV3. Приложения модуля.	2	2	4
20.	Представление порта. Управление мотором.		2	2
21.	Игра «Веселые старты»		2	2
Итог	70:		72	

4 модуль «Программирование. Работа с конструктором LEGO MINDSTORMS EV3.»

№ Тема		Коли	чество часо	сов	
п/п		теория	практика	всего	
	1. Программирование (28	ч.)			
1.	Повторение пройденного материала	2	4	6	
2.	Среда программирования модуля.	2		2	
3.	Создание программы. Удаление блоков.		4	4	
4.	Выполнение программы. Сохранение и открытие программы.		2	2	
5.	Решение задач на движение по кривой. Независимое управление моторами.	2	4	6	
6.	Поворот на заданное число градусов. Расчет угла поворота.	2	2	4	
7.	Использование нижнего датчика освещенности. Решение задач на движение с	2	2	4	

	остановкой на черной линии.			
	Проектная деятельность (4	44 ч.)		·
8.	Проект. Этапы создания проекта. Оформление проекта. Работа над проектами. Правила соревнований.	2	4	6
9.	Подготовка конструктора к созданию собственной модели.		2	2
10.	Конструирование собственной модели робота		12	12
11.	Программирование и испытание собственной модели робота.	2	4	6
12.	Соревнование роботов на тестовом поле. Зачет времени и количества ошибок.		4	4
13.	Презентации и защита проектов «Мой уникальный робот»		8	8
14.	Заключительное занятие. Разборка роботов. Приведение конструкторов в порядок.		4	4
15.	Резерв	2		2
Итог	TO:		72	•

Содержание программы

1 модуль «Знакомство с конструктором Lego Education We Do 2.0»

1. Введение (4 ч.)

Инструктаж по технике безопасности в кабинете начальных классов при работе с конструктором.

Правило работы с конструктором и электрическими приборами набора LEGO WeDo и LEGO We Do-2 (с примерами).

Значение робототехники в Космической отрасли, Демонстрация технологических разработок используемых в Российской Федерации.

Формы занятий: лекция, беседа, индивидуальная работа, презентация, видеоролики.

2. Знакомство с конструктором LEGO (4 ч.)

Знакомство с основными составляющими частями конструктора.

Знакомство учащихся с базовыми и ресурсными наборами конструктором с LEGO WeDo и LEGO WeDo-2 (цвет и формы деталей).

Формы занятий: лекция, беседа, презентация.

3. Знакомство с программным обеспечением и оборудованием (14 ч.)

Изучение среды программирования Scratch на платформе приложения Scratch v1.4. .

Знакомство с иконками —символьных обозначений программных команд, представленных в виде «программных кубиков» (блоков), из которых по аналогии с материальной конструкцией из кубиков LEGO собирается визуальная конструкция.

Знакомство с названием деталей, типом передач, с электронными компонентами.

Знакомство с различными моторами и датчиками:

- 1) Средний мотор-заставляет двигаться другие компоненты.
- 2) Датчик перемещения помогает обнаруживать изменения в расстоянии до объекта. 3)Датчик наклона— обнаруживает изменения в шесть различных позициях.
- 4)Аккумуляторная батарея СмартХаб— экономичный, экологически безвредные и удобный источник энергии для робота.

Формы занятий: лекция, беседа, индивидуальная работа, решение проблемы, практическая работа.

4. Конструирование заданных моделей (32 ч.)

Создание модели «Манипулятор» - конструирование и программирование модели манипулятора. Учащиеся должны сконструировать манипулятор.

Учащиеся построят и запрограммируют модель *«Мельница»*, установят скорость движения оси мельницы и устанавят датчик наклона.

Учащиеся построят и запрограммируют модель «Подъёмный кран» установят размер осей. Запрограммируют скорость подъема грузов.

Учащиеся построят и запрограммируют модель «*Истребитель*», скорость движения и количество оборотов мотора. Все проделанные действия помогут раскрыть суть работы механизмов модели.

4.2 Модель WeDo-2.0

Изучение базовых моделей. Проект №1 «Первые шаги»

Учащиеся построят и запрограммируют модель *«Майло научный вездеход»* Проект №1 «Первые шаги» **часть** «**А**», которая посвящена изучению способов при помощи которых учёные и инженеры могут использовать вездеходы для исследования мест недоступных для человека..

Проект №1 «Первые шаги» *часть* «*Б*» «*Датик перемещения Майло*» позволит познакомиться учащимся с возможностями использования датчика перемещения для обнаружения различных экземпляров растений.

Проект №1 «Первые шаги» *часть* «*С*» «*Датчик наклона Майло*», учащиеся будут строить устройство, используя датчик наклона, который поможет отправить сообщение на базу.

5. Индивидуальная проектная деятельность (14 ч.) Резервные часы (4ч.)

2 модуль «Проектные мотели Lego Education We Do 2.0, программирование Scratch»

1. Введение (4ч.)

Инструктаж по технике безопасности в кабинете начальных классов при работе с конструктором.

Правило работы с конструктором и электрическими приборами набора LEGO WeDo и LEGO We Do-2 (с примерами).

Формы занятий: беседа, индивидуальная работа, презентация.

2. Повторение деталей конструктора LEGO (4ч.)

Повторение основных составляющих частей конструктора LEGO WeDo и LEGO WeDo-2 (цвет и формы деталей).

Формы занятий: лекция, беседа, презентация.

- 3. Знакомство с программным обеспечением и оборудованием *Scratch* (14ч.)
 - 4. Конструирование заданных моделей (32 ч.)

Проекты с пошаговыми инструкциями:

«Тяга» Учащиеся создают модель и исследуют результат действия уравновешанных и неуравновешанных сил на движение объекта.

«Скорость» Учащиеся создают модель изучают факторы, которые могут увеличить скорость автомобиля, чтобы помочь в прогнозировании его дальнейшего движения.

«Прочность конструкции» Учащиеся с помощью симулятора землетрясений, который сконструирован из кубиков Lego, исследуют характеристики здания.

«Метаморфоза лягушки» Учащиеся выясняют каким образом головастик превращается в лягушку, и почему она перемещается из воды в наземную среды.

«Растения и опылители» Учащиеся должны выяснить, какой вклад животные вносят в жизненные циклы растений?

«Защита от наводнений» Проект посвящён разработке автоматического паводкового шлюза Lego для управления уровнем воды в соответствии с различными шаблонами выпадения осадков.

«Спасательный десант» Учащиеся моделируют устройства, снижающие отрицательные воздействия последствий опасного погодного явления.

«Сортировка отходов» Учащиеся при помощи созданных моделей разрабатывают способы сортировки различных объектов в зависимости от их форм и размеров.

Проекты с открытыми решениями

«Хищник и жертва» Учащиеся создают различные модели животных для описания отношений между ними.

«Язык животных» Учащиеся создают различных существ и моделируют их способы общения.

«Экстремальная среда обитания» Учащиеся при помощи созданных моделей рассматривают животных и среду их обитания.

«Исследование космоса» Учащиеся проектируют, конструируют и тестируют робот-вездеход.

«Предупреждение об опасности» Учащиеся проектируют, конструируют и тестируют устройства оповещения о различных природных явлениях.

«**Очистка океана**» Учащиеся проектируют, конструируют и тестируют устройства для сбора отходов в океане.

«Мост для животных» Учащиеся проектируют и строят мост для исчезающих животных, занесенных в красную книгу.

«Перемещение предметов» Учащиеся проектируют, конструируют и тестируют устройства для подъема, перемещения различных предметов.

5.Индивидуальная проектная деятельность (14 ч.) Создание и защита собственных моделей.

3 модуль «Знакомство с конструктором LEGO MINDSTORMS EV3»

1. Введение в робототехнику (20 ч).

Цели и задачи курса. Что такое роботы. Ролики, фотографии и мультимедиа. Рассказ о соревнованиях роботов: Евробот, фестиваль мобильных роботов, олимпиады роботов. Спортивная робототехника. Конструкторы и «самодельные» роботы. Виды роботов. Значение роботов в жизни человека. Основные направления применения роботов. Искусственный интеллект. Описание курса, предстоящей работы. Понятие проектной деятельности.

Знакомство с конструктором, основными деталями и принципами крепления, рабочим местом и средой разработки программ, правила работы. Подготовка конструкторов к работе.

2. Конструирование. Знакомство с роботами LEGO Mindstorm EV3 (52ч.)

Основные управляющие детали конструктора. Их название и назначение. Модуль EV3. Обзор, экран, кнопки управления модулем, индикатор состояния, порты. Установка батарей, способы экономии энергии. Включение модуля EV3. Запись программы и запуск ее на выполнение. Сервомоторы и различные датчики EV3, их устройство и характеристики, освоение методов работы с ними. Сбор обучающего робота. Изучение способов движения (по прямой и кривой траектории) с использованием различных датчиков. Захват и перемещение объектов. Первые соревнования роботов «Весёлые старты», «Кегельринг», «Змейка».

4 модуль «Программирование. Работа с конструктором LEGO MINDSTORMS EV3.»

1. Программирование (28ч.)

На основе программы LEGO Mindstorms Education EV3 школьники знакомятся с блоками компьютерной программы: дисплей, движение, цикл, блок датчиков, блок переключателей. Под руководством педагога, а затем и самостоятельно пишут программы: «движение «вперёд-назад», «движение с ускорением», «робот-волчок», «восьмёрка», «змейка», «поворот на месте», «спираль», «парковка», «выход из лабиринта», «движение по линии». Рассматривается группа управляющих операторов и варианты их применения.

2. Проектная деятельность (44 ч.)

Учащиеся проектируют своих роботов и программируют их. Готовят роботов к соревнованиям: «Кегельринг», «Движение по линии», «Сумо». Учащиеся реализуют собственный проект. В ходе их работы с одной стороны осуществляется коллективное обсуждение и критика их идей, а с другой напротив защита собственного мнения и принятых решений учениками. Для вдохновения на собственные идеи проходит анализ готовых проектов, их конструкций и программ. В конце темы каждый учащийся (либо группа учеников) выступает с защитой своего проекта, используя демонстрацию работы робота и средства компьютерных презентаций.

Ожидаемые результаты при освоении 1 и 2 модуля программы Личностные результаты:

- Сформировать способность у ученика к саморазвитию, самообразованию и самоконтролю на основе мотивации к робототехнической и учебной деятельности;
- Сформировать современное мировоззрение к современному развитию общества и науки;
- Сформировать информационно-коммуникативную компетентность для успешной социализации и самореализации в обществе.

Метапредметные результаты:

- Умение ставить и реализовывать поставленные цели и задачи;
- Умение самостоятельно планировать свою деятельность;
- Умение выполнять и правильно оценивать результаты собственной деятельности;
- Умение создавать, разрабатывать и реализовывать схемы, планы и модели для решения поставленных задач;
 - Умение устанавливать причинно-следственные связи и логически мыслить.

В ходе изучения курса учащийся научиться:

- Простыми методами и формами обработки и анализа данных;
- Информационно-коммуникативной компетентность и информационной культуре;
 - Основам программирования;
- Умениям автоматизировать и решать поставленные задачи, используя компьютер и технические устройства как инструмент.

Программа обладает профориентационной направленностью. В ходе обучения поможет ученику определить свои склонности к инженернотехническому конструированию и моделированию, поспособствует к определению бедующему развитию и цели в жизни.

В результате освоения 2 и 3 модуля программы учащиеся должны Знать/понимать:

- роль и место робототехники в жизни современного общества;
- основные сведение из истории развития робототехники в России и мире;
- основных понятия робототехники, основные технические термины, связанные с процессами конструирования и программирования роботов;

- правила безопасной работы;
- основные компоненты конструкторов ЛЕГО;
- общее устройство и принципы действия роботов;
- основные характеристики основных классов роботов;
- виды подвижных и неподвижных соединений в конструкторе; основные приемы конструирования роботов;
- общую методику расчета основных кинематических схем;
- порядок отыскания неисправностей в различных роботизированных системах;
- основные принципы компьютерного управления, назначение и принципы работы цветового, ультразвукового датчика, датчика касания, различных исполнительных устройств;

Уметь:

- собирать простейшие модели с использованием EV3;
- самостоятельно проектировать и собирать из готовых деталей манипуляторы и роботов различного назначения;
- использовать для программирования микрокомпьютер EV3 (программировать на дисплее EV3)
- пользоваться компьютером, программными продуктами, необходимыми для обучения программе;
- подбирать необходимые датчики и исполнительные устройства, собирать простейшие устройства с одним или несколькими датчиками, собирать и отлаживать конструкции базовых роботов;
- правильно выбирать вид передачи механического воздействия для различных технических ситуаций, собирать действующие модели роботов, а также их основные узлы и системы;
- создавать программы на компьютере для различных роботов;
- корректировать программы при необходимости;
- прогнозировать результаты работы;
- планировать ход выполнения задания;
- рационально выполнять задание;
- руководить работой группы или коллектива;

2. Комплекс организационно-педагогических условий.

Условия реализации программы:

Для эффективности реализации образовательной программы необходимы материальные ресурсы:

- 1. LEGO WEDO 2.0 конструкторы 2. Лицензионное программное обеспечение 2000095 LEGO® Education We $\,$ Do TM
- 2. Открытая и бесплатная среда программирования SCRATCH, программный продукт Scratch (version 1.4).
 - 3. Ресурсные наборы Lego Education WeDo-2.0
 - 4. Ноутбуки
 - 5. Проектор
 - 6. Интерактивная доска
 - 7. Сканер

- 8. Принтер
- 9. Видеооборудование
 - 10. Базовые наборы Lego Mindstorms EV3
- 11. Набор ресурсный средний
- 12. Программное обеспечение Lego Mindstorms EV3 EDU
- 13. Руководство пользователя Lego Mindstorms EV3
- 14. Зарядные устройства 2 шт.
- 15. Набор полей для соревнований 1 шт.

Формы аттестации (контроля):

- защита итоговых проектов;
- участие в конкурсах на лучший сценарий и презентацию к созданному проекту;
- участие в школьных и городских научно-практических конференциях (конкурсах исследовательских работ).

Методическое обеспечение

Основной организационной формой обучения в ходе реализации данной образовательной программы является занятие. Это форма обеспечивает организационную чёткость и непрерывность процесса обучения.

Формы занятий: соревнования, выставки, конкурсы, практикум, занятие – консультация, занятие – ролевая игра, занятие – презентация, занятие проверки и коррекции знаний и умений.

Методы организации учебного процесса.

- <u>Информационно рецептивный метод</u> (предъявление педагогом информации и организация восприятия, осознания и запоминание обучающимися данной информации).
- <u>Репродуктивный метод</u> (составление и предъявление педагогом заданий на воспроизведение знаний и способов умственной и практической деятельности, руководство и контроль за выполнением; воспроизведение воспитанниками знаний и способов действий по образцам, произвольное и непроизвольное запоминание).
- <u>Метод проблемного изложения</u> (постановка педагогом проблемы и раскрытие доказательно пути его решения; восприятие и осознание обучающимися знаний, мысленное прогнозирование, запоминание).
- <u>Эвристический метод</u> (постановка педагогом проблемы, планирование и руководство деятельности учащихся; самостоятельное решение обучающимися части задания, непроизвольное запоминание и воспроизведение).
- <u>Исследовательский метод</u> (составление и предъявление педагогом проблемных задач и контроль за ходом решения; самостоятельное планирование обучающимися этапов, способ исследования, самоконтроль, непроизвольное запоминание).
- В организации учебной познавательной деятельности педагог использует также словесные, наглядные и практические методы.

Словесные методы. Словесные методы педагог применяет тогда, когда главным источником усвоения знаний обучающимися является слово (без опоры на наглядные способы и практическую работу). К ним относятся: рассказ, беседа, объяснение и т.д.

Наглядные методы. К ним относится методы обучения с использованием наглядных пособий.

Практические методы. Методы, связанные с процессом формирования и совершенствования умений и навыков обучающихся. Основным методом является практическое занятие.

Дидактические средства.

В ходе реализации образовательной программы педагогом используются дидактические средства: учебные наглядные пособия, демонстрационные устройства, технические средства.

Список литературы для педагога:

- 1. Автоматизированное устройство. ПервоРобот. Книга для учителя. К книге прилагается компакт диск с видеофильмами, открывающими занятия по теме. LEGO We Do, 177 с., илл.
- 2. Асмолов А.Г. Формирование универсальных учебных действий в основной школе: от действия к мысли Москва: Просвещение, 2011. 159 С.
- 3. Книга учителя LEGO Education WeDo (электронное пособие)
- 4. Комплект методических материалов «Перворобот». Институт новых технологий.
- 5. Мир вокруг нас: Книга проектов: Учебное пособие.- Пересказ с англ.-М.: Инт, 1998.
- 6. Примерные программы по внеурочной деятельности для начальной школы (Из опыта работы по апробации ФГОС)/ авт.-сост.: Н.Б. Погребова, О.Н.Хижнякова, Н.М. Малыгина, Ставрополь: СКИПКРО, 2010
- 7. Чехлова А. В., Якушкин П. А.«Конструкторы LEGO DAKTA в курсе информационных технологий. Введение в робототехнику». М.: ИНТ, 2001 г.
- 8. ЛЕГО-лаборатория (Control Lab):Справочное пособие, М.: ИНТ, 1998, 150 стр.
- 9. 30.Ньютон С. Брага. Создание роботов в домашних условиях. M.: NT Press, 2007, 345 стр.;
- 10. 31. Филиппов С.А. Робототехника для детей и родителей. С-Пб, «Наука», 2011г.
- 11. Интернет ресурсы
- http://www.lego.com/education/
- http://learning.9151394.ru
- http://www.legoeducation.info/nxt/resources/building-guides/
- http://www.legoengineering.com/
- http://www.prorobot.ru/lego/dvijenie_po_spiraly.php
- http://technic.lego.com/en-us/BuildingInstructions/9398%20Group.aspx

- http://www.nxtprograms.com/robot_arm/steps.html
- http://www.mos-cons.ru/mod/forum/discuss.php?d=472
- http://www.isogawastudio.co.jp/legostudio/modelgallery_a.html
- http://sd2cx1.webring.org/l/rd?ring=robotics;id=2;url=http%3A%2F%2Fwww%2Eandyworld%2Einfo%2Flegolab%2F
- http://www.int-edu.ru/object.php?m1=3&m2=284&id=1080
- http://pacpac.ru/auxpage_activity_booklets/
- http://9151394.ru/?fuseaction=proj.lego
- http://9151394.ru/index.php?fuseaction=konkurs.konkurs
- http://www.lego.com/education/
- http://www.wroboto.org/
- http://www.roboclub.ru/
- http://lego.rkc-74.ru/
- http://legoclab.pbwiki.com/
- http://www.int-edu.ru/
- http://strf.ru/material.aspx?d_no=40548&CatalogId=221&print=1
- http://masters.donntu.edu.ua/2010/iem/bulavka/library/translate.htm
- http://www.nauka.vsei.ru/index.php?pag=04201008
- http://edugalaxy.intel.ru/index.php?automodule=blog&blogid=7&showentry=1948
- http://legomet.blogspot.com
- http://www.memoid.ru/node/Istoriya detskogo konstruktora Lego
- http://legomindstorms.ru/2011/01/09/creation-history/#more-5
- http://www.school.edu.ru/int
- http://robosport.ru
- http://myrobot.ru/stepbystep/

Список литературы для учащегося

- 1. Автоматизированное устройство. ПервоРобот. Книга для учителя. К книге прилагается компакт диск с видеофильмами, открывающими занятия по теме. LEGO WeDo, 177 с., илл.
- 2. Мир вокруг нас: Книга проектов: Учебное пособие.- Пересказ с англ.-М.: Инт, 1998.
- 3. Интернет ресурсы
- 4. http://www.lego.com/education/